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It is also restricted to the case that each type of stack- 
ing fault 'produces' only one new type of unit cell in 
the material. 

The intensity distribution of a powder diagram line 
is described by equation (26) with the same limitations 
as for equation (25). The quantities ~0(t; L) and C(t) 
in equation (26) can be replaced by rp"(t; L) and C"(t), 
chosen such that ~0"(t; L ) = 0  for L>_½d. This provides 
also a right description of the intensity distribution of 
a Debye-Scherrer line. The quantities ~0"(t; L) and 
C"(t) can be found from the line profiles; the corre- 
sponding unprimed quantities cannot be found from 
a powder diagram, unless a model of the distortions is 
assumed. 

The intensity distributions given in equations (25) 
and (26) are still unnormalized. When one wishes to 
determine the distribution of the distortions and the 
form function of the average coherently scattering re- 
gion it is necessary to know the normalization constant 
to within the factor N. To find that constant, equation 
(26) is integrated over So 

-- dso ~ , f , f ; ,  _ C(t)G2,2,,(t; sz)N~,~,(t) 
- -  oo  p p ,  

x exp (2rcisot) L) exp (2rcislL)dL 

= Z fpf*p' ( t )G~,( t )N~,( t )dt  
pp" 

= Noo(O)fof o + Nil(0) Z 2Refof; • (52) 
p¢o 

Here we used G~o:o,(0)= 1 and N:o~,(0)=0 if p, p '  50 .  
Equation (52) holds when all glide plane directions are 

equivalent by the symmetry of the structure, or, when 
No~(t) = 0 for p ¢ 0 and p ~ 1. We have for these cases: 

kNn(O)=N-Noo(O) . (53) 

Where k is the number of types of stacking faults. 
Thus the inverse of the normalization constant is: 

(s0)ds0 =fof oNoo(O) + N-N°°(O) ~ {2Refof~}. 
k p ~ o  

(54) 

Once the stacking-fault density re is known, one can 
calculate the normalization constant to within the fac- 
tor N by means of relations (53) and (54) and the 
relation 

x = N-1Nn(0).  (55) 

A final remark should be made. In equations (44), (49), 
(50) and (51) we disregarded the special case, that one 
of the glide plane directions is perpendicular to Sn. 
Then, for that type of stacking-fault, N-1No~(t) equals 
zero instead of K, and that value should be substituted 
into equations (41) and (42). Of course x can be sub- 
stituted for all other types of stacking faults. The equa- 
tions (49), (50) and (51) can be adapted immediately 
by omitting F ~  and F~ e for that type of stacking fault. 

We are indebted to Prof. A. G. M. Janner for his 
criticism and remarks. 
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Crystal Measurements for Absorption Correction 
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A method is described for determining, with few measurements and calculations, the bounding planes 
of a crystal. 

The availability of computer programs for absorption rections can be calculated for polyhedral crystals to 
correction by either the Gaussian integration or ana- any desired accuracy. This suggests that it may be 
lytical methods (Ahmed, 1970) means that these cor- preferable not to grind crystals into spheres, a proce- 
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dure that often cannot be applied, and that frequently 
produces ellipsoids rather than spheres, introducing a 
further error that is very difficult to remove. 

The problem then becomes simply one of measuring 
and describing the crystal as exactly as possible, and 
this note presents a simple method of doing so. A per- 
fect crystal can be described equally well by its ver- 
tices or faces, but if it is slightly damaged or irregular, 
the faces are likely to be more easily identified and 
located. This can be done goniometrically, and indices 
assigned to each face, but this may require rather com- 
plex calculation; also with an irregular crystal, the 
'best' bounding surface may not be a crystallographic 
plane. By the present method, the equations of the 
bounding faces are directly determined with a mini- 
mum of measurement and calculation. They are re- 
ferred to orthogonal axes, which can be used directly 
in some absorption programs if the crystal is suitably 
oriented (Alcock, 1969) or can be converted to any 
other axis set. 

A generally similar method has been developed by 
H. A. Levy and is described by Busing (1969), which 
is probably more accurate if the bounding planes are 
crystallographic planes, but involves the use of a four- 
circle diffractometer with a telescope mounted inde- 
pendently of the ,Z and ¢ circles. 

Theory 

If the crystal is rotated, while being viewed perpen- 
dicular to the axis of rotation through a microscope 
or telescope, then every face will, at some position, 
be 'eclipsed' so that it is parallel to the line of view 
(excepting basal and apical planes which are always 
eclipsed). 

Fig. 1 shows a crystal in which two planes are in 
this configuration. Taking the axis of rotation as the  
z axis, Fig. 2 shows the traces of these planes in the 
x - y  plane. If the normal to the trace of one plane 
is D1 and its polar coordinate ~01, then its equation is 

x cos ~01+y cos (~01-90) =D1 (1) 

and the equation of the crystal plane must be 

x cos ~ l + y  cos (~ol -90)+Kz=Dx.  (2) 

If the acute angle between the eclipsed plane and the 
z axis is 01 (Fig. 1) then the plane cuts the z axis at 

z =  + D1/tan 01 (3) 

i.e. K in equation (2) is + tan 01. The + or - sign 
depends on whether the intersection is towards + or 
- z .  Thus the plane is defined by means of the three 
quantities, D, ~0 and 0. 

Typical procedure 

The crystal (on a goniometer head) is positioned under 
the microscope so that it can be rotated through a 
measurable angle, perpendicular to the microscope 

axis (assumed vertical) and also rotated with the mi- 
croscope stage, and translated to bring the crystal into 
view. A suitable device is the Nonius crystal orienter 
(adapted to attach to the stage) on which a dial in- 
dicates the angle of rotation of the crystal. The micro- 
scope eyepiece is equipped with some means of measur- 
ing distance fairly precisely (e.g. a Vickers screw micro- 
meter eyepiece, which incorporates a slide wire moved 
by a calibrated drum). 

The dial reading (~0) at which the x axis is pointing 
up is determined or defined. [This could be when a* 
is vertical if the crystal is mounted about e (Alcock, 
1969)]. The crystal is moved by the goniometer head 
slides until the rotation axis, which will be the z axis, 
passes through it. The eyepiece (or stage) is rotated 
until this axis is perpendicular to the measurement 
direction, and the crystal is moved until the line on 
which measurements will be taken (to be the x - y  
plane) intersects as many faces as possible. 
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Fig. 1. View of a crystal rotated until two plaaes (marked E) 
are eclipsed. The x and y axes are in the plane marked x , y .  
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Fig.2. View of the x - y  plane (+z  out of the paper), with 
traces of two crystal planes. The polar coordinates (q0 and 
the dial angles (qt) are also shown. 
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Then the crystal is rotated until each face is eclipsed. 
The dial angle (~'.4) and the scale reading (DA) where 
the face cuts tbe x, y line are noted; the crystal is then 
rotated through 180 ° and the measurements repeated 
(~B, DB). To obtain 0, the stage is rotated until each 
face, in its eclipsed position, is parallel to one of the 
crosswires. A note is also made of whether the face 
interesects the + z  or - z  axis. If the relationship be- 
tween ~, and the x - y  direction is as in Fig. 2 then 
~0 = 9 0 - ( ~ u -  ~'0), where ~ is the dial reading when the 
plane is on the 'positive' side of the z axis (i.e. the side 
to which + y  projects when the x axis is vertical). The 
distance D, from the z axis is given by half the differ- 
ence between Da and DB, while the z axis cuts the 
x - y  plane at a scale value Da + D. The plane equation 
is then: 

x sin (~ , -  ~0)+Y cos ( ~ -  ~0) + z  tan O=½(DB-Da).  

For example: 

~0 =256°. 1 drum unit=0.00004283 cm. Positive side 
of z axis is to the lower scale value. 

~a  = 64 °, Da = 376 drum units. 

~B = 244 ° DB = 596 drum units. 

0 =20  ° intersecting + z  (away from the goniometer 
head). 

This gives D =  110, the z axis is at 486, ~ =  g A - g 0  = 
168 ° , and the plane is: 

x sin 168+y  cos 168+z tan 20=  110.0.00004283 

o r  

0.2079 x -0 .9871  y+0.3640 z=0.004711.  

For planes which do not cut the x - y  line, two courses 
are possible. If, when eclipsed, they cut the crosswire 
parallel to the z axis (at 500 units on the screw-microm- 
eter eyepiece) the eyepiece can be rotated through 
90 ° and the distance of this intersection from the x - y  
line measured. Then, using 0, the intersection of the 
eclipsed plane with the z axis can be calculated (Dz) 
and then the distance D = Dz cos 0. For a basal plane, 
of course, the equation is simply: 

z ~ ' D  z • 

Alternatively, the distance (parallel to the z axis) to 
some prominent point can be measured (by rotating 
the eyepiece), the crystal translated until this point 
lies on the x - y  line, and a further series of measure- 
ments made with a new origin, and referred to the first 
origin. 
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It is shown that in certain circumstances the relaxed vertical collimation of a triple-axis spectrometer 
can lead to the measured one-phonon neutron groups having two peaks, and experimental measurements 
which clearly show the splitting and indicate its origin are presented. In the form of dispersion curve 
considered, two branches of the curves are degenerate along a symmetry direction but split for any ad- 
jacent wave vector with the splitting directly proportional to the distance from the symmetry direction. 
An additional requirement is that the resolution function of the spectrometer should be squashed along 
the symmetry direction and expanded perpendicular to it. Calculations which also show the splitting of 
the neutron groups are described. 

Introduction 

In inelastic neutron scattering experiments performed 
with a triple-axis spectrometer, it is customary for the 
vertical divergence of the spectrometer to be greater 
than the horizontal divergence by a factor of two or 
three. Whenever possible specimens are mounted with 
a mirror plane horizontal. This normally results in the 
frequencies of the observed phonons or magnons not 

changing, to first order, for wave vectors slightly out 
of the scattering plane. The relaxed vertical collima- 
tion then leads to a useful increase in intensity with 
negligible broadening of the neutron groups. The pres- 
ence of a mirror plane is not, however, sufficient to en- 
sure that the constant frequency surfaces cut the scat- 
tering plane normally. If two branches of the disper- 
sion curve are degenerate along a line in the scattering 
plane, for wave-vectors with a small off-symmetry- 


